
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

CODEN:LUTEDX/(TEIE-3073)/1-47/(2017)

Scalability study of database-
backed file systems for High
Throughput Computing

Andy Trinh

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Lund University

Bachelor Thesis

Presented to LTH School of Engineering

Scalability study of database-backed file

systems for High Throughput Computing

Author:
Andy Trinh

Supervisors:
Flavius Gruian

Florido Paganelli

August 24, 2017

Abstract

The purpose of this project is to study the read performance of transparent
database-backed file systems, a meld between two technologies with seem-
ingly similar purposes, in relation to conventional file systems. Systems such
as the ARC middleware relies on reading several millions of files every day,
and as the number of files increases, the performance suffers. To study the
capabilities of a database-backed file system, a candidate is chosen and put
into test. The candidate, ultimately being Database File System (DBFS), is
Oracle Database using FUSE to create a transparent file system interface.
DBFS is put into test by storing millions of small files in its datafile and
executing a scanning process of the ARC software. With the performance
data gathered from these tests, it was concluded that DBFS, while perform-
ing well on an HDD when compared to ext4 in terms of scalability and read
performance, is simply outperformed by XFS with small (from 50 000 files)
and large (up to 1 600 000 files) directories.

Key words: database-backed file system, dbfs, scalability, xfs, ext4, database,
file system, fuse, arc, read performance, alternative storage, rdbms, file sys-
tem interface

Acknowledgement

I would like to thank all the people that helped to enable and support this
study. Some truly stand out and have offered support and advice in good as
well as stressful times, and they have my sincerest and most heartfelt grati-
tude.

I am truly grateful to Flavius Gruian for supervising this project. His guid-
ance, support and critical thinking has been invaluable and his constructive
comments have greatly improved the report and the project.

My deepest and warmest thanks to Florido Paganelli, for being a great
supervisor, inspiring mentor and a supportive friend. Working with him has
been an educational and joyful experience with many laughs shared. I could
not possibly have wished for more.

i

Contents

1 Introduction 1
1.1 Data storage technologies . 1
1.2 Thesis specifications . 2

1.2.1 Background and problem statement 2
1.2.2 Research questions . 3
1.2.3 Study scope . 4
1.2.4 Contributions of this study 4
1.2.5 Report overview . 5
1.2.6 Related work . 5

2 ARC and file systems 7
2.1 The ARC middleware . 8

2.1.1 ARC overview . 8
2.1.2 A-REX . 8
2.1.3 The infoprovider subsystem 9
2.1.4 Reading metadata files 9
2.1.5 Performance deterioration 10

2.2 File Systems . 10
2.2.1 Basic structures of a file system 11
2.2.2 Initializing a file system 12
2.2.3 ext4 . 13
2.2.4 XFS . 13

3 Method 14
3.1 Phase one: Searching for a database-backed file system 14
3.2 Phase two: Test specification 15

3.2.1 Overview . 15
3.2.2 Amount of jobs and metadata files 16

ii

3.2.3 Generating a job and metadata for the test run 17

4 Search process outcome and test results 18
4.1 File system candidate . 18

4.1.1 Search process . 18
4.1.2 The chosen file system candidate 19

4.2 Server specifications . 21
4.3 ARC performance results . 21

4.3.1 Average read rate . 22
4.3.2 Performance graphs . 22

5 Discussion 26
5.1 Source criticism . 26
5.2 Finding a databased-backed file system 26
5.3 Analysis of the performance data 27
5.4 Proposed solution for ARC servers 28
5.5 Conclusion . 28

Appendices 29

A Code repositories 30
A.1 Test run scripts . 30
A.2 ARC source code repository 30

B Technical details and configurations 32
B.1 Chapter 3 . 32

B.1.1 Metadata generation 32
B.1.2 Running the infoprovider subsystem 32

B.2 Chapter 4 . 33
B.2.1 Configuring the RDBMS 33
B.2.2 The target CDs . 33

C All results 36

iii

Chapter 1

Introduction

File systems and databases are closely related to each other, but differ in
some properties which ultimately dictates the area of usage. In very broad
terms, the properties they share in common are the fact that they both store
data and have a conventional methods of managing this data. The subject
of this study lies in a grey zone between these two technologies: the read
performance of database-backed file systems. The following sections will
discuss the background of file systems and databases with some traditional
definitions and how these technologies might benefit the middleware ARC.

1.1 Data storage technologies

Before lunging into historical context and properties of databases, one might
wonder what a database is to begin with. A database is simply an organized
collection of data, usually stored for a long period of time. Using this defi-
nition, the history of databases stretches all the way to ancient civilizations,
where people would store literature and other important texts in libraries.
It was not until the 1960s where the modern computerized databases began
its development. The databases back then derived from file systems, which
suffered from numerous problems in terms of accessibility and persistence.
To access data in a file system, the user has to know the specific location of
the data. Moreover, a file system generally cannot warrant data persistence.
These disadvantages led to some criteria a modern database is expected to
fulfill. To meet these criteria, the concept of a Database Management System
(DBMS) was introduced, a software application which as the name suggests

1

manages the stored data. A DBMS is therefore essential for a function-
ing database and are often times taken for granted when speaking of just
databases (Garcia-Molina et al., 2003, pp. 1-4).

The idea of data location was abstracted with the introduction of rela-
tional databases in the 1960s. With relational databases, users no longer
needed to know where specific data is located, nor did they need to spend
time studying how each and every data storage is structured. Instead, they
can rely on a programming language (i e SQL) to retrieve the stored data
(IBM, 2003). Although many technological advances and alternatives, such
as NoSQL, has been made since then, relational databases are still a popular
alternative for data storage.

When using file systems, arbitrary user data is stored in files and the loca-
tion of these files are an important property of file systems. This contrasts a
relational database, which stores structured collections of data and abstracts
the notion of data location. Also, when speaking of file systems, details such
as blocks, block size and partitions are of importance (Giampaolo, 1998, pp.
7). Some software solutions, such as ARC, are heavily reliant on file systems
and its properties.

In terms of the file system development today, a common trend is that
they today tend to focus on largely sized data and distributed systems. This
can be realized by just observing the amount of distributed file systems re-
leased in the past decade (as of 2017). Many popular file systems, ext4
(Mathur et al., 2007, pp. 21-22) and XFS (Sweeney et al., 1996, no pagina-
tion) to name a few, was designed to handle very large files. ARC, however,
is reading a large amount of small files with sizes ranging a few bytes to a
few kilobytes. The file system alternatives for ARC and similar software are
remarkably smaller.

1.2 Thesis specifications

1.2.1 Background and problem statement

At CERN, scientists and engineers are conducting an array of different ex-
periments which require heavy computing power. The computing process is
carried out by a network of clusters, each cluster running a batch system,
which today handles millions of jobs. Maintaining such system with an ever
increasing workload presents major challenges to the system engineers, one

2

of the challenges being the many files that are managed by ARC.
ARC, developed by NorduGRID, is a middleware designed to manage

such batch systems. The clusters that are affiliated with CERN are equipped
with ARC, which also acts as an interface from the user to the batch sys-
tem. The many tasks of ARC include pre- and post-processing the incoming
jobs, preparing them for the batch system, which in turn will carry out the
necessary computations. When done, the system will relay the job output
back to the sender. As the number of jobs increase, the performance of ARC
decreases, efficiently causing a bottleneck for whole job procedure. The un-
derlying problems could be many in theory, and in this report, the focus will
be on the file read performance of ARC.

Hitherto, the developers of NorduGrid already has conducted internal in-
vestigations in hopes of isolating the problem causing the read performance
deterioration. Since some components of ARC are mainly working with very
small and structured data in large volumes, the developers are hoping of
adapting the architecture to a database solution, but the current design of
ARC would require major redesign and reconstruction of the ARC architec-
ture to fit a database, which is why they seek a file system interface on top
of a database, simply put a database-backed file system.

To evaluate and somehow relate the performance of the database-backed
file system, it will be matched against two popular conventional file systems,
ext4 and XFS. By looking at the differences of the performance, it might
also shed some light on the reasons of the declining file read performance.
The ultimate goal of this study is to test if database-backed file systems are
viable alternatives for ARC.

1.2.2 Research questions

This report will study some of the database-backed file systems and test one
in relation to some conventional file systems and possibly unveil bottlenecks
in the middleware ARC by measuring the performance with different file
systems containing a lot of small files. The research questions of this thesis
are:

1. What are some possible factors that are bottlenecking ARC in terms
of read performance?

2. What is the performance of ARC when reading and processing small
files

3

(a) with a file system with database backend?

(b) with a conventional file system such as ext4?

1.2.3 Study scope

There are possibly other solutions which will solve the read performance prob-
lem, but this study will mostly focus on benchmarking off-the-shelf database-
backed file systems without altering the source code of ARC. To clarify, the
following are not within the scope of this thesis:

• Refactoring ARC source code to fit a database interface.

• Refactoring ARC source code in order to change the ARC middleware
software architecture.

• Providing a better performing file system than the current file systems
of the computers equipped with ARC.

1.2.4 Contributions of this study

Database-backed file systems are not a common alternative for file storage
and therefore not many studies have been conducted on them in comparison
to conventional file systems. This study contributes by showing the search
process of a database-backed file system as well as its performance in relation
to conventional file systems when using ARC, which will contribute to the
following:

• The contribution of presenting the search process lies in the feature
comparison of the different database-backed file systems available off-
the-shelf. There are many properties that need to be considered when
choosing a database-backed file system, such as file transparency and
underlying technology, and this study will present and evaluate some
of these properties of each found file system.

• The benchmarking compares the read performance of ARC when using
database-backed file system and conventional file systems, which in
this study is ext4 and XFS. This is done by storing different amounts
of small files in each of the file systems and executing ARC.

4

1.2.5 Report overview

In short, several database-backed file systems will be evaluated and one of
them will be chosen as a candidate. A server mounted with the target file
systems (XFS, ext4 and the candidate) is tested by storing a different amount
of small files in each file system. The following paragraphs provide a short
description of each chapter:

Chapter 1: Introduction Chapter 1 describes the background of this
study together with the framework of the study, problem statement and
related work.

Chapter 2: File systems and ARC Chapter 2 introduces some relevant
file system concepts together with the brief introduction to the conventional
file systems ext4 and XFS. An overview of ARC, the subcomponent which is
being tested and how files are read is also given here.

Chapter 3: Method Chapter 3 explains the approach and methods used
to (1) find a database-backed file system candidate and (2)to test the database-
backed file system.

Chapter 4: Search process outcome and test results In the fourth
chapter the process of searching for a candidate is described together with
the performance results of the test runs.

Chapter 5: Discussion In the final chapter, discussions such as source
criticism and speculations of the test results can be found along with the
conclusion of this study.

1.2.6 Related work

As earlier mentioned, not many studies have been conducted on database-
backed file systems. The following lists show some relevant file system studies,
the first one being a performance study of an actual database-backed file
system and the two latter being a study of FUSE, a common tool used when
interfacing a database with a file system.

5

1. The Design and Implementation of The Database File System by Mur-
phy et al. (2002): This report shows the design and implementation
of a database-backed file system called DBFS. DBFS has adapted the
POSIX file system interface on top a Berkeley DB, allowing software
to access files with little code change. While not directly related to
this report, it shows a proof of concept of a well-performing database-
backed file system already back in 2001. In the report, the read and
write performance of DBFS tested and it fares well in comparison with
Berkeley Fast File System (FFS).

2. Comparison of kernel and user space file systems by Duwe (2007):
Using File System in User Space (FUSE) is one way of interfacing a
database with a file system. The report tests the performance of FUSE
by comparing it with other file systems such as memfs. Although FUSE
requires an extra overhead when accessing the file system (Krier and
Liska, 2009, pp. 6-7), the report shows that it still can perform well un-
der some circumstances. Looking at the test environment of the study,
it mainly focuses on larger file sizes and observing kernel operations.
This shows that if a database-backed file system uses FUSE to create
a file system interface, it might be a viable option even if there is an
overhead caused by FUSE.

3. To FUSE or Not to FUSE: Performance of User-Space File Systems
by Vangoor et al. (2017): Continuing with FUSE, the report tests the
capabilities of an optimized FUSE by comparing the read and write
performance of ext4 with and without FUSE on top. The results are
promising, showing that FUSE can perform almost as well as a native
ext4 in some cases.

6

Chapter 2

ARC and file systems

One of the many tasks of ARC is to manage the metadata of the jobs sub-
mitted to the cluster. The reading of the job metadata files, which is the
main subject of this study, is done in a rather simple way: metadata files are
stored in a directory and then read periodically using Perl scripts. However,
the set up of the benchmarking is rather delicate, since the tests are purely
done through ARC. This means that the file systems, files and test execution
need to function with ARC.

Section 2.1 will give an overview of ARC, introduce the ARC information
system called infoprovider subsystem and explain how files are read by this
subsystem. Since this is not a raw benchmarking study, it is important to
know how ARC handles the metadata files to understand what the results
actually show. Some technical details are omitted for a more streamlined
reading, these details can be found in Appendix B.1. The information about
ARC is taken from ARC Computing Element, System Administrator Guide,
written by Paganelli et al. (2016).

To help understand what happens under the surface when data is ac-
cessed in a file system, section 2.2 will go through file systems fundamentals
along with a short introduction to ext4 and XFS with a focus on the block
structures.

7

2.1 The ARC middleware

2.1.1 ARC overview

ARC, short for Advanced Resource Connector, is an open-source grid com-
puting middleware used to create grid infrastructures and enables services
such as sharing, federation of computing and resource storage distributed
across different administrative and application domains. It is developed by
NorduGrid and has been in active use by organizations since 2002.

ARC consists of three main components, namely the Computing Element
(CE), the Storage Element and the Indexing Service. CE per se works as a
layer between the computing resource (typically a local cluster) and the des-
ignated client tools. These tools can be used to retrieve information about
a resource, query, submit and manage computing jobs. On a higher level,
ARC also serves as an abstraction layer between the clients and a local clus-
ter, concealing the advanced computing architecture and processes involved
when handling a job.

The two other components of ARC provides storage and indexing (link-
ing) of several computing resources. These are not used in this study and
will not be further discussed.

CE is a component which manages jobs in a number of different ways
and consists of several subcomponents which all provides job services. As a
whole, tasks of the CE includes advertising the local cluster’s capabilities and
location to clients, accepting job execution requests, processing jobs through
the execution service (A-REX) and forwarding a submitted job to a local
batch system.

2.1.2 A-REX

The main component of ARC CE is the A-REX (ARC Resource-coupled EX-
ecution Service). A-REX executes jobs in the underlying local batch system
and also handles the pre- and post-processing of the jobs. The pre-processing
prepares the job for the batch system, which involves downloading the neces-
sary files and data to execute a certain job. The metadata for a job is created
and stored in the directory called the Control Directory (hereby referred as
CD) of A-REX. Each job is assigned a unique ID, and every associated file
is conventionally named after a schema containing the ID. Listing 2.1 shows
a sample of this naming convention of job files containing metadata in the

8

CD. The extension of the metadata files describes its contents.

Listing 2.1: A sample of job metadata files created by A-REX when a job is
submitted. The files are located in the CD. Each job generates 11 metadata

files.

1 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . d e s c r i p t i o n
2 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . d iag
3 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . e r r o r s
4 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . grami
5 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . input
6 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . i npu t s t a tu s
7 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . l o c a l
8 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . output
9 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . proxy

10 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . s t a t i s t i c s
11 job . 2 fQtGR1TurLF3XB8vJf58J26HPZUAUJIu2NF3UPOvRq9UxrTaYcUJi . f i n i s h e d

2.1.3 The infoprovider subsystem

The infoprovider subsystem is a collection of Perl scripts which gathers infor-
mation about the batch systems, jobs and users. When a job is submitted,
the metadata for it is generated and the infoprovider subsystem periodically
run scripts that read the metadata files located in the CD. This is done in
order to gather information about the job status. The most important scripts
for this study are the following:

CEinfo.pl The main script is used to initiate the job information collection
by running and coordinating scripts.

GMJobsInfo.pm The module provides the subroutine collect(), which
gathers job information by reading the metadata files stored in CD. As earlier
mentioned, 11 files are generated for each submitted job, however, collect()
attempts to read 6 of them and only 5 succeeds. One of them is missing
because the job is never actually executed.

2.1.4 Reading metadata files

The whole reading procedure is started by running CEinfo.pl, which will
start running other necessary scripts and start the collect() subroutine of
GMJobsInfo.pm.

9

collect() scans by firstly retrieving the ID of all the jobs in CD and
storing it in a list as strings. For every ID in this list, the metadata file-
names are constructed by appending the metadata extensions to the ID. The
metadata file is then directly accessed and its contents scanned with respect
to what extension it has. This is repeated for every ID and every exten-
sion. Listing 2.2 shows this algorithm in pseudocode. For the source code of
GMJobsInfo.pm, see A.2.

Listing 2.2: The listing shows the algorithm used to read and process the
metadata files.

1 Store a l l IDs in i d l i s t
2 f o r each id in i d l i s t
3 Append id with ” . l o c a l ”
4 Open id . l o c a l
5 Scan contents o f id . l o c a l
6

7 Append id with ” . d iag ”
8 Open id . d iag
9 Scan id . d iag

10

11 . . . Repeat un t i l a l l 6 metadata f i l e s has been proces sed
12 f o r end

2.1.5 Performance deterioration

The infoprovider subsystem is stateless, which means that every scan of the
CD has no memory of the previous scan. The scripts only read the metadata
files in the CD and do not modify (write) them. The infoprovider subsystem
reads the job status in a timely basis, so if a client were to query a submitted
job status, the infoprovider would return the latest status report of the job.
While being very simple in design, this poses several challenges to the sub-
system and its developers, such as managing the large amount of metadata
files when there are many jobs submitted. Moreover, inexplicable slowdowns
in reading the CD has been noted by the developers. In some cases, the
performance gradually becomes even worse than the initial read speed.

2.2 File Systems

Basic structures of file systems are introduced here to describe what the-
oretically happens under the surface when a file is being accessed in a file

10

system. Since the infoprovider subsystem works heavily with files, with the
information from this section it will be easier to reason and understand the
trends of the test results.

The source of the file system theory presented in this section is gathered
from the second chapter in Practical File System Design with the Be File
System by Giampaolo (1998), if not specified otherwise.

2.2.1 Basic structures of a file system

Files and inodes

File systems abstract data in form of files. A file is in its simplest form a
collection of data, stored in a specified location of the disk. While a file
itself contains user data, there is normally an inode associated with that file.
What data an inode exactly contains varies from file system to file system,
but it normally contains metadata such as file size, owner, date of creation
and the last date of modification. The most important task of an inode is to
keep track of the file block locations since the blocks composing file data are
not necessarily physically close to each other.

Directories

Directories are an important structure of a file system. For ARC, this is
especially important since the CD is, in fact, nothing but an ordinary direc-
tory. A directory provides a mean to manage and collect files into a single
structure. The implementations of directories differ depending on file system,
but essentially a directory contains a list of file names. The name of the file
name is the key whereas the associated inode is its value.

There are different ways of arranging the file names in a directory. Some
file systems keep the keys completely unsorted, whilst others (such as ext4
and XFS) use more sophisticated data structures like B-trees.

Most DBMS and file systems today use B-trees variations to organize
files in a directory. B-trees are very popular due to the decreased need for
performing expensive I/O operations on a disk.

In short, B-trees are a generalization of a binary search tree (BST), which
means that a B-tree allows more than two paths from a node, expanding the
amount of data that can be stored on a node. This is especially beneficial
when used in disk storage because if a file system loads a large node into

11

the memory, it can reduce necessary I/O operations on disk, assuming that
the subsequent reads only requires data of the same node. The larger node
size also decreases the depth of the tree, which means that a data query in
worst-case only needs a few I/O operation on disk.

In a B-tree, key values and references are stored in the nodes. When
querying data, the process is similar to that of a BST. Due to the larger
nodes, the differences lie in the decision making at each node. Since there
are more key values stored in each node, more decision making has to be
done before proceeding to the next node if the queried data was not found
in the current node (Comer, 1979, pp. 123-124).

There are other variants of the B-tree, such as the B+-tree and HTree.
They typically follow the same idea of a generalization of BST, but they
differ in other aspects. One of the reasons B+-tree was developed was due to
the relatively poor performance of sequential reads of B-trees (Comer, 1979,
pp. 128). The B+-tree addressed this by changing the node structure. In a
B-tree, each node contains keys to a corresponding data value. In a B+-tree,
the data values are all moved to the leaf nodes. The keys are still present
in each node, but the internal nodes of a B+-tree do not contain any data
values. The keys in these nodes serve as an intermediate step for reaching the
leaf nodes. In a B+-tree, the leaf nodes are also conveniently linked to each
other, and since all data is stored in the leaf nodes, all the key values and
data values of a B+-tree are linked to each other. In theory, this improves the
performance of sequential reads of spatially close data since they are stored
as a linked list (Comer, 1979, pp. 129-130).

2.2.2 Initializing a file system

Before using ext4, XFS or the candidate, they need to be somehow initialized
and mounted. For conventional file systems, deciding how large the compo-
nents of a file system, such as block size, partition size and superblock size
is a part of this initialization. After these parameters have been decided, a
top-level directory, commonly known as root, will also be created. Finally,
the file system needs to be mounted in order to access its contents. What
the OS does when accessing the mount point depends on which OS that is
being used, but generally the OS will read the metadata provided by the file
system, thus unveiling its contents.

12

2.2.3 ext4

Ext4 (ext short for ”extended file system”) is a journaling file system and it
is the fourth version of the extended file systems, which was first introduced
in 1992 as simply ext.

Looking at the block structure, ext4 is divided into smaller groups of
blocks, simply called block groups. To reduce fragmentation and achieve
faster access times, the block allocator makes an attempt into putting the
blocks of the same file in the same block group. Each block group has a
group descriptor, containing metadata for that particular block group, such
as which blocks included in the group and the range of inodes (Fairbanks,
2012, pp. 123-124).

To list the files in a directory, ext4 uses a modified B-tree called HTree,
which hashes its key values and has a constant tree depth.

2.2.4 XFS

XFS is a high-performance journaling file system developed by Silicon Graph-
ics, Inc. It was designed with parallel I/O and large data sets in mind. This
gives XFS an advantage over other file systems since it was designed for large
systems from day one. Many features, such as extents and delayed alloca-
tions, were pioneered by XFS and are used in other modern file systems such
as ext4 (Hellwig, 2009, pp. 10-12).

XFS uses allocation groups, which are equally sized chunks of blocks, sim-
ilar the block groups to ext4. Although they might look the same externally,
they work differently internally. Allocation groups can be seen as a smaller
file system, managing their own space allocations and dynamically allocates
inodes. This was designed to support large multi-threaded file system op-
erations. An allocation group is typically larger than an ext4 block group,
ranging from 0.5 to 4.0 GB.

The large groups of blocks could cause problems when dealing with either
very large files or small files. When it comes to the small files XFS tries to
chunk files of the same directory in the same allocation group. To achieve
this, a directory is allocated on a different allocation group from its parent.
This allows the file system to cluster blocks and inodes of the same directory
(Sweeney et al., 1996, no pagination). To list the inodes in a directory, XFS
uses B+-tree structure (Sil, 2006, pp. 19-29).

13

Chapter 3

Method

This study is separated into two phases: (1) searching, studying and pick-
ing a database-backed file system to test (a candidate file system) and (2)
installing, configuring and benchmarking one of the found software solutions
together with ext4 and XFS. Section 3.1 will explain the approach and search
criteria when looking for a database-backed file system and Section 3.2 de-
scribes how the test environment, such as managing the metadata files, is set
up.

3.1 Phase one: Searching for a database-backed

file system

Searching for a database-backed file system is done in three different ways: (1)
by looking at different tools and libraries that could enable such technology,
(2) searching in different source code repositories and (3) using general and
academic search engines.

It was noted early on that the term file system is a broadly used term
and can refer to many different types of file systems. On one end there
are conventional file systems such as ext4, XFS and NTFS, whilst on the
other end there are distributed file systems. Some file systems fall outside of
this spectrum, among them are the ones that are called file systems but are
technically APIs. This broad definition complicates the search process, since
simply searching for a file system will give a huge variety of different software
solutions. To narrow the search domain, the needs and requirements of ARC
were identified and the following criteria were established:

14

1. Transparency: In this study, transparency refers to the ability to use
system calls for I/O file operations, meaning that there will be no need
of altering the ARC source code to fit the database-backed file system.
The scripts running the infoprovider subsystem needs to be able to
transparently read the files without need of code alteration, without
knowing the specifics of the underlying file system.

2. Active development: If the developers of NorduGrid were to con-
sider a database-backed file system, active development of the database-
backed file system is highly advantageous due to available support and
stability. However, for this study it would suffice if the file system can-
didate worked with the latest kernel but if it is no longer in development
it will less likely to become a candidate.

3. Independent of other services: The file system should not rely and
be maintained on any other third party organization or company. The
file system should be able to be installed and run on a single computer.

4. Deployable: The file system must work on Linux, since the servers
running ARC are using Linux. If the file system setup and configuration
is simple and a desktop environment is not needed, the file system would
be higher prioritized. Other things to consider are the libraries needed
for a found file system. Too many libraries could cause complication
when installing it on servers running ARC.

While not a criterion, the fact that the ARC CD lies on a single computer
must be considered when choosing a file system candidate. What this means
for the search is that other than the file system working on a single computer,
it should also be viable for simple storage of small files.

3.2 Phase two: Test specification

3.2.1 Overview

The file systems are tested by creating CDs containing different amount
of job metadata files, storing them in each file system and then running
the infoprovider subsystem. The subsystem is patched with a performance
logger, which calculates the reading time for each file read. This process

15

involves several preparations, which all are explained in this section. In
short, the subtasks of the preparation are:

1. Deciding amount of jobs to be read.

2. Generating metadata files to a predetermined amount by copying the
metadata files of a dummy job.

3. Storing different amount of metadata files in different CDs.

4. Storing the aforementioned CDs in every file system to be tested.

5. For every CD in each file system:

(a) Setting the target CD in the ARC configuration file.

(b) Running the infoprovider subsystem to scan the files of the target
CD.

(c) Gather the performance log generated by the infoprovider subsys-
tem.

Technical details, such a description of the scripts used and metadata
generation can be found in Appendix 3.

3.2.2 Amount of jobs and metadata files

Each cluster typically handles sub-40K jobs at any given point of time, but to
put the file systems to test, it was decided that the files systems were going to
be tested with up to 160K jobs. Note that here, 160K jobs refer to generating
metadata file of 160K jobs, not reading or executing 160K jobs. To see how
the performance correlates with a number jobs, the volume is doubled for
each test run, meaning that starting with 5K jobs, the file systems are tested
with 5K, 10K, 20K, 40K, 80K and 160K jobs.

To further study the capabilities of the file systems, for each file system
the tests are run on a solid state drive and a mechanical drive.

Table 3.1 shows the number of files in the CD of each test run. In the
table, the rows describe how many jobs that generated the metadata, whereas
the columns describe storage type and file system for each test run. This
totals in 36 test runs. In terms of organizing the directories, each test run

16

Table 3.1: The full test specification. Candidate refers to the candidate file
system chosen in Phase one.

Amount of jobs (in thousands)

SSD HDD

Run XFS ext4 Candidate XFS ext4 Candidate

5K runs 5 5 5 5 5 5
10K runs 10 10 10 10 10 10
20K runs 20 20 20 20 20 20
40K runs 40 40 40 40 40 40
80K runs 80 80 80 80 80 80
160K runs 160 160 160 160 160 160

has its own CD, meaning that all things considered there are in total 36 CDs
distributed among the different file systems and hard drives.

As for how many files that are actually stored and read in each test run,
for the 5K job, 11 files are generated, whereas only 6 are attempted to be
read. For example, for the 5K run, the corresponding CD is stored with
roughly 55K files, and around 36K of these files attempted to be read by the
infoprovider subsystem.

3.2.3 Generating a job and metadata for the test run

It is important to stress that this study revolves around fitting and testing
file systems with ARC and is not a raw benchmarking. The metadata must
conform to a syntax which the infoprovider subsystem can parse.

To generate such metadata, a tool called arctest was used, which is bun-
dled with ARC. This was used to generate one job, which will in turn cause
ARC to generate the metadata. The metadata files for this single job are
then copied to generate metadata for a new job. Therefore, the contents of
the generated metadata files are all the same, the only property that needs
to be different is the ID of the job, which is expressed in the filename.

The metadata generation was done in an incremental fashion, meaning
that the CD containing 5K jobs is a subset of the CD containing a larger
amount of jobs. This was done to ensure that the infoprovider subsystem
reads the same set of files, regardless of volume.

17

Chapter 4

Search process outcome and
test results

In Chapter 3, the search criteria for the file system candidate is established
in Section 3.1 and the test environment is described in Section 3.2.

In this chapter, the outcome of the file system candidate search is pre-
sented and Section 4.1 and hardware specifications for the test runs can be
found in Section 4.2. Finally, the results from the test runs are shown in
Section 4.3.

The technical configurations of the database-backed file system and the
properties of the generated CDs, such as size, can be found in Appendix B.2.

4.1 File system candidate

4.1.1 Search process

The open-source community has created a handful of database-backed file
systems, however, the majority of these are small-scale projects developed
by a single developer and are no longer maintained or further developed.
Looking at the enterprise-level database-backed file systems, some of them
are not transparent for the OS or are focused on distributed systems. Since
the size of the CD is relatively small and is locally stored on a single computer,
the distributed file systems were considered too grand-scaled for this study.
Other databased-backed file systems do not handle small files very well.

While searching for a database-backed file system, it was noted that many

18

databased-backed file system uses FUSE. FUSE has the property that it
can represent files in a transparent way, which means the OS will treat the
underlying data that interface with FUSE as if it was any other file stored
in a conventional file system. This file system property is one of the most
important ones in this study since the developers of NorduGrid wishes to
avoid larger code alterations of ARC.

In short, the database-backed file systems that ultimately were discarded
as a candidate file system had the one or more of the following drawbacks:

1. Outdated and no longer in further development.

2. Missing I/O functionality, such as writing or reading.

3. Lack of transparency.

4. Integrating to ARC requires a source code or architecture overhaul.

The list of considered database-backed file systems can be found in Table
4.1. The file systems listed are the ones that were initially considered before
researching deeper into their capabilities and functionality. In the table,
each column represents a criterion described in Section 3.1, where TR stands
for transparency, AD for active development, IN for independent of other
services, and DE for deployable. If a database-backed file system fulfills the
criterion, the corresponding checkbox is ticked. Due to the nature of software
development, the information provided may be prone to change.

The database-backed file system marked with a star (*) utilises FUSE as
a file system interface.

4.1.2 The chosen file system candidate

The chosen candidate file system was ultimately decided to be Database File
System (DBFS), developed by Oracle. It was chosen due to it fulfilling all
of the criteria described in Section 3.1 and due to the popularity of Oracle
products. DBFS uses FUSE1 to create a file system interface with Oracle
DB, an RDBMS, as its backend. In this study, the free version of Oracle
Database 12c Enterprise Edition was used.

FUSE (Filesystem in Userspace) is a two-part interface which helps de-
velopers to develop filesystem in userspace. The benefits of developing with

1Libfuse repository: https://github.com/libfuse/libfuse

19

Table 4.1: Considered database-backed file systems

Name TR AD IN DE

GridFS � �X � �

Comment: While initially looking promising candidate, GridFS is in
fact an API despite it being named a file system.

Link: https://docs.mongodb.com/manual/core/gridfs/

CouchDB-fuse* �X � �X �X

Comment: Uses very old libraries that would not compile with Cen-
tOS 7.

Link: https://code.google.com/archive/p/couchdb-fuse/

Libsqlfs* �X �X �X �X

Comment: Libsqlfs was another potential candidate. DBFS was cho-
sen due to having the more popular database.

Link: http://www.nongnu.org/libsqlfs/

Postgresqlfs* �X � �X �

Comment: A small project which is no longer in development.

Link: https://github.com/petere/postgresqlfs

BerkeleyDB /w FUSE* �X � �X �

Comment: Uses old libraries and is thus outdated.

Link: https://git.kernel.org/cgit/fs/fuse/dbfs.git/about/

Database File System � � �X �

Comment: Database File System seems to be a GUI application to
access files in a database, thus there are many uncertainties regarding
its transparency.

Link: http://dbfs.sourceforge.net/

Mongofuse* �X � �X �

Comment: This project was developed in 24 hours as a part of a
competition and was thus not considered reliable.

Link: https://github.com/asivokon/mongo-fuse

20

FUSE is that it provides a way for a user to develop a file system without
editing the kernel code, effectively hiding the complex kernel architecture.
The first part of FUSE is the fuse kernel module and the second part is the
libraries which are an API for the file system. The fuse kernel module reg-
isters a fuse device which will serve as an interface for the FUSE userspace
libraries. When a user makes a FUSE file system operation, the Virtual File
System (commonly referred as VFS) will receive this call and direct it to-
wards the fuse kernel module. This call is then put on a FUSE queue by the
module and will eventually be computed by a FUSE daemon (Rajgarhia and
Gehani, 2010, no pagination).

DBFS itself is actually a tool used to create a conventional file system
interface on top of Oracle DB. The database data can be accessed either
through PL/SQL or by mounting through FUSE.

When using DBFS, data is stored as segments in a tablespace, which is a
logical representation of the data. Segments are any database objects, such
as tables and indices. The data stored in a tablespace is physically stored in
a data file located on the disk (Ora, 2017, no pagination).

When storing files through DBFS, the data is stored with a schema just
like any other data in the database. This schema describes the file metadata
and the contents of the file are stored as a BLOB.

4.2 Server specifications

The computer used is a server-level computer with 4 GB of RAM, two HDDs
and one SSD. One of the HDD hosts the system OS and the Oracle RDBMS,
whilst the other HDD and SSD were each partitioned into three roughly
equally sized partitions. Two of these were formatted with ext4 and the last
one with XFS. One of the ext4 stored the datafile for DBFS. Table 4.2 shows
the full server specifications. When creating the partitions, the block size
was set to the default size of 4096 B.

4.3 ARC performance results

The performance data gathered from the infoprovider subsystem are pre-
sented in this section. The main goal is to highlight the potential factors that
affect the read performance of the target file system, in particular DBFS.

21

Table 4.2: The specifications of the server used to run the tests.

Server part Model name

OS CentOS 7
Motherboard Intel Desktop Board DX79TO
CPU Intel Core i7-3820 CPU @ 3.60GHz
RAM Samsung DDR3 4096 MB
Storage (System OS) Seagate ST31000340NS 1TB
Storage (Test HDD) Western Digital WDC WD10EZRZ-00H 1TB
Storage (Test SSD) Intel SSDSA2BW12 120GB

The results will abstract the notion of files to jobs instead, meaning that
the performance is expressed as ”jobs per second” rather than ”files per
second”. This way, it is easier to correlate a job submission with the perfor-
mance.

4.3.1 Average read rate

The average read rate is measured in jobs per second, shown on the Y-axis,
and includes the performance data gathered from the transient state of the
system.

When using an HDD, the graphs shown in Figure 4.1 shows that XFS
outperformed ext4 and DBFS for all the given amounts of jobs. Ext4 was
especially susceptible to an increased job volume, suffering about a consid-
erable performance degradation in relation to the other file systems. DBFS
and XFS, on the other hand, performs relatively well regardless of file vol-
ume. While DBFS performed well in comparison with ext4, it is still slow
with a read rate of roughly 80 jobs per second.

As for the test runs performed on the SSD, the graphs in Figure 4.2 shows
that when using SSD, the performance of ext4 boosted significantly from its
HDD counterpart, performing roughly at the same speed as XFS. While both
ext4 and XFS benefited from SSD, no considerable performance gain can be
observed on the DBFS.

4.3.2 Performance graphs

This section contains the graphs showing the performance trends during a
test run. Each graph of this section shows a number of jobs read for a unit

22

Figure 4.1: The average speed of a full test run on an HDD.

0

50

100

150

200

250

5K 10K 20K
Jobs in CD

A
vg

. j
ob

s
re

ad
 p

er
 s

ec
on

d
[jo

bs
/s

]

File system
DBFS
ext4
XFS

Average job read speed per run (HDD)

(a) 5K, 10K and 20K jobs

0

50

100

150

200

250

40K 80K 160K
Jobs in CD

A
vg

. j
ob

s
re

ad
 p

er
 s

ec
on

d
[jo

bs
/s

]

File system
DBFS
ext4
XFS

Average job read speed per run (HDD)

(b) 40K, 80K and 160K jobs

Figure 4.2: The average speed of a full test run on an SSD.

0

100

200

300

5K 10K 20K
Jobs in CD

A
vg

. j
ob

s
re

ad
 p

er
 s

ec
on

d
[jo

bs
/s

]

File system
DBFS
ext4
XFS

Average job read speed per run (SSD)

(a) 5K, 10K and 20K jobs

0

50

100

150

200

250

40K 80K 160K
Jobs in CD

A
vg

. j
ob

s
re

ad
 p

er
 s

ec
on

d
[jo

bs
/s

]

File system
DBFS
ext4
XFS

Average job read speed per run (SSD)

(b) 40K, 80K and 160K jobs

23

Figure 4.3: The performance data of a test run with 5K and 20K jobs stored on
an HDD

DBFS

ext4

XFS

5K jobs (HDD)

Elapsed time [s]

Jo
bs

 r
ea

d

0

50

100

150

200

250

0 10 20 30 40 50 60 70

(a) 5K jobs

DBFS

ext4

XFS

20K jobs (HDD)

Elapsed time [s]

Jo
bs

 r
ea

d

0

50

100

150

200

250

300

0 100 200 300 400

(b) 20K jobs

of time. In the graphs that show results from the lower volumes (5K, 10K,
20K), the Y-axis describes the jobs read each second. In the graphs that
shows the results from the higher volumes (40K, 80K and 160K), the Y-axis
shows average jobs read per second for a given minute. This aggregation of
performance data was done to avoid data point cluttering due to the large
amount of performance data. The focus in this section will be on the lower
volumes, graphs of the larger volumes can be found in Appendix C and were
moved there because the performance trends of the larger volumes test runs
were similar to the lower ones.

The graph in Figure 4.3a displays the results from the test run of 5K
jobs on the HDD. It shows that while all the target file systems has a stable
performance after reaching the steady state, XFS shows a slightly turbulent
performance in relation to DBFS and ext4. DBFS has a decreasing perfor-
mance in its transient state while ext4 has an increase in performance and
remains longer in its transient state. Even though the size of the CD is
increased by twofold for each run, the transient response does not change
much. Similar performance trends can also be observed on the test runs of a
larger CD, as seen on the graph in Figure 4.3b, which shows the results from
the test run of 20K.

Looking at the performance of the 5K and 20K jobs on the SSD in Fig-
ure 4.4a and Figure 4.4b, the graphs shows us that the relatively turbulent
performance of XFS is still persisting in the SSD test runs and that ext4

24

Figure 4.4: The performance data of a test run with 5K and 20K jobs stored on
an SSD

DBFS

ext4

XFS

5K jobs (SSD)

Elapsed time [s]

Jo
bs

 r
ea

d

0

100

200

300

400

0 10 20 30 40 50 60

(a) 5K jobs

DBFS

ext4

XFS

20K jobs (SSD)

Elapsed time [s]

Jo
bs

 r
ea

d

0

50

100

150

200

250

0 50 100 150 200 250

(b) 20K jobs

no longer suffer from a long transient response. Moreover, the ext4 shows
the relatively turbulent readings as seen on the results from XFS, but it is
slightly more consistent than XFS. As for the DBFS, no notable performance
trend differs from its HDD variant.

25

Chapter 5

Discussion

5.1 Source criticism

The sources used are from proceedings of different conferences, academic
reports and scholarly literature. The reliability is considered to be high,
although there is a risk of some information being outdated. This is mostly
due to the volatile open-source development of software. For instance, the
official documentation of XFS was lastly updated over a decade ago. Surely,
some components have changed. However, a complete architecture revamp
would most likely generate new reports that describe the changes.

Some of the discussed technologies, such as FUSE, completely lack an offi-
cial documentation of how it works internally. This was solved by reading the
background section of different academic reports that study this technology.

5.2 Finding a databased-backed file system

It has become more clear that even if the high level concept of storing data in
a database or a file system are somewhat similar, they are difficult to compare
on a one-to-one basis, let alone comparing databases with other databases
and file systems with other file systems. The reason for this is mostly the
differences in the underlying technology. For instance, XFS uses a blocking
scheme similar to ext4, but groups blocks together to form allocation groups.
How they work internally is quite different: the allocation groups of XFS
works more like an independent file system and manages their own space,
while the structure design of ext4 has space locality in mind.

26

Deducting performance outcome of each property of a file system would
be too time-consuming for this study, but because of the criteria set up for
the search (as described in Section 3.1, the amount of potential database-
backed file systems were greatly narrowed down. This is not necessarily ad-
vantageous in search of a well-performing solution since many of the popular
databases such as PostgreSQL, MongoDB and Cassandra were excluded.

5.3 Analysis of the performance data

Comparing the performance of ext4 with DBFS on an HDD, DBFS has
a slight advantage when it comes to read performance. In the conducted
tests XFS outperforms both in any case. The causes of this are difficult to
exactly pinpoint with the theory presented and the experiments conducted,
but since directories and files were some of the main subjects of the tests one
could argue that the directory structure of XFS greatly benefited its read
performance. One of the main design goals of the B+-tree was the fact that
the sequential reading of B-tree was poor (Comer, 1979, pp. 128). In theory,
the B+-tree structure should give XFS a greater advantage over ext4 since
the XFS attempts to store files with the same parent directory into a common
allocation group. When reading sequentially, access times might have been
reduced due to the linked leaf nodes. Simply put, XFS might use available
memory better than ext4.

As for the DBFS, the underlying storage technology has little effect on
the performance. While performing well in comparison with ext4 in the
HDD case, it is outclassed by XFS. Another aspect that has not been dis-
cussed earlier is the write performance of DBFS. Poor write performance has
been observed when storing the many job files into the DBFS mount points.
Nevertheless, DBFS has shown good scalability properties, with little per-
formance degradation with respect to the CD volume. There is a possibility
of the FUSE system calls causing a bottleneck for DBFS but that is difficult
to prove without testing the performance of the database without FUSE.
Whether FUSE was automatically optimized for reading small files in the
experiments is unclear.

27

5.4 Proposed solution for ARC servers

This study shows that a database-backed file system does not necessarily
improve the read performance of ARC. The process of trying to find other
database-backed file system might be too time-consuming and thus not be
feasible, due to the many different flavours of this technology.

Without changing the architecture of ARC, one way that in theory should
increase the performance of the servers using XFS would be to separate
the different kinds of metadata files into smaller directories. The results
show, the increased file volume in the directory has a negative impact on the
performance of the conventional file system.

As a result of this study, these proposals have been accepted by the ARC
developers team and are planned for future releases of ARC.

5.5 Conclusion

When considering a database-backed file system as an alternative storage,
one has to have a look at many factors due to the varying underlying tech-
nology. In this study, DBFS, a file system with a FUSE interface on top of an
RDBMS, was chosen as a database-backed file system candidate for testing
due to its active development and ability to transparently present files to the
OS.

When reading many small files in a directory, the database-backed file
system DBFS does not perform well when compared to a high-performing
file system such as XFS. The results show us that XFS performed about
4-5 times better than DBFS with directories containing up to 160 000 jobs,
which is roughly 1.6 million files. In spite of its lacking performances in
relation to XFS, the read performance of DBFS on an HDD showed good
results when compared to ext4, showing a consistent performance even with
a highly increased file volume.

The storage technology used had a great impact on the read performance
of the conventional file system, especially for ext4. The read performance of
DBFS however, remained unchanged even when changing from HDD to SSD.
The reasons for this are not clear and it would require more benchmarking
to narrow the possible reasons, but one possible bottleneck could be the
overhead caused by FUSE kernel calls each read.

28

Appendices

29

Appendix A

Code repositories

A.1 Test run scripts

Repository link: https://bitbucket.org/Anditron/thesisrepo/src
The scripts stored in this repository were used to set up the test environ-

ment, this includes generating the metadata files. The scripts stored in the
repository are:

• arc.conf : The minimal configuration file used to run the infoprovider
subsystem (CEinfo.pl).

• genCDentries.sh: The script used to generate metadata files by copy-
ing an existing one and changing its filename.

• runtests.sh: The script used to run the tests, is used in conjuction
with changeline.sh.

• changeline.sh: The script used to change the lines of arc.conf. This
was done in order to automatise the many test runs.

A.2 ARC source code repository

• ARC source code repository: http://svn.nordugrid.org/

• Infoprovider subsystem scripts: http://svn.nordugrid.org/repos/
nordugrid/arc1/trunk/src/services/a-rex/infoproviders/

30

https://bitbucket.org/Anditron/thesisrepo/src
http://svn.nordugrid.org/
http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/infoproviders/
http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/infoproviders/

• Modified GMJobsInfo with performance collection: http://

svn.nordugrid.org/repos/workarea/florido_paganelli/performance/

31

http://svn.nordugrid.org/repos/workarea/florido_paganelli/performance/
http://svn.nordugrid.org/repos/workarea/florido_paganelli/performance/

Appendix B

Technical details and
configurations

B.1 Chapter 3

B.1.1 Metadata generation

The ARC middleware provides a test application called arctest, which is a
tool to generate a job tasks for test purposes. As of April 2017, there are
three possible realistic test jobs that can be generated by ARC.

The metadata is copied using a BASH script provided by the developers of
NorduGrid. This script, called genCDentries.sh, can be found in Appendix
A.1. The script creates more metadata, but only does so superficially by
copying the contents of existing metadata and then changing the name of
the generated metadata.

B.1.2 Running the infoprovider subsystem

Before running the infoprovider subsystem to scan a target CD, the ARC-
configuration file, arc.conf, needs to be set accordingly. This needs to be
done before every test run.

A minimal configuration file provided by NorduGrid was used for the runs,
which can be found in Appendix A.1. The most important settings were the
keys controldir and perflogdir. The value of controldir is the target
CD, and the value perflogdir is the target directory of the performance
logs.

32

There are two ways of running the infoprovider subsystems: either by
starting A-REX or simply running CEinfo.pl. To automatize the test run
process, BASH scripts were developed to automatically configure arc.conf

and start the test runs. They are called runtests.sh and changeline.sh

and can be found in Appendix A.1.
To reduce the risks of depleting all the available inodes, the 160K test

runs are done lastly, after finishing the test runs on the smaller CDs, which
can then be deleted to leave more space for 160K jobs CD.

B.2 Chapter 4

B.2.1 Configuring the RDBMS

Oracle’s RDBMS was installed on in the System HDD, more specifically in
\u1 and \u2 of the root directory. To query and configure the database,
the database command-line utility sqlplus was used. A bigfile and non-
autoallocating tablespace was created alongside a data file of roughly the
same size as the hosting partition. In the SSD, the datafile size was set to
33 GB and in HDD it was set to 120 GB.

The SSD data file was stored in /dev/sda3 and HDD data file in /dev/sdc3.
To create a file system out of the data file, the script dbfs_create_filesystem.sql
was run on the tablespace. The script is provided by the Oracle DB In-
staller. Using dbfs_client, the contents of the data files were mounted on
/arctest/test_ssd_dbfs and /arctest/test_mk_dbfs, respectively.

B.2.2 The target CDs

As described in Section 3.2, the CDs were first created before copied to
the mount points of the target file system. To avoid confusion and mixing
of the different CDs, several directories were created where the top-level
ones were the mount point of the target file systems. Each of these mount
points contained CDs of different sizes. Figure B.1 shows the mount points
of each device and Figure B.1 shows the hierarchy of the test directories. In
the arctest directory, there are in total 8 mount points, where 6 of them
contains CDs of different sizes and 2 contained their own data file for the
DBFS. For each test run, the configuration file arc.conf was set to one
of the CDs in Figure B.1 as target CD. For instance, a test run for a CD

33

Table B.1: The mount configurations of the target file systems.

Device Type Mount point File system

/dev/sda1 SSD /arctest/test ssd ext4 ext4
/dev/sda2 SSD /arctest/test ssd xfs xfs
/dev/sda3 SSD /arctest/orcldb mk ext4 (Data file host)
/dev/sdc1 HDD /arctest/test mk ext4 ext4
/dev/sdc2 HDD /arctest/test mk xfs xfs
/dev/sdc3 HDD /arctest/orcldb ssd ext4 (Data file host)

of size 10K jobs on a ext4 mechanical drive, the target CD would be set
as /arctest/mk_test_ext4_controldir10K. The folders orcldb_mk and
orcldb_ssd contains the data file used for the database.

The metadata files generated are typically a few bytes to 4 KB. The
size of the CDs are listed in Table B.2 and the size of the files scanned
by the infoprovider subsystem is listed in Table B.3. Note that files with a
.failed extensions are actually not generated. This is because the actual job
execution is never carried out. The infoprovider subsystem will still attempt
to read it.

Table B.2: The size of the
generated CDs.

CD Size Size

5K 221 MB
10K 421 MB
20K 822 MB
40K 1.6 GB
80K 3.2 GB
160K 6.4 GB

Table B.3: The size of the
metadata 6 files scanned.

Extension Size

.local 1.1 KB

.status 8 B

.failed 0 B

.grami 1.5 KB

.description 2.3 KB

.diag 437 B

34

Figure B.1: The test folders hierarchy.

/

arctest

mk test ext4

controldir5k

controldir10k

controldir20k

controldir40k
...

mk test xfs

mk test dbfs

ssd test ext4

ssd test xfs

ssd test dbfs

orcldb mk

datafile mk.dat

orcldb ssd

datafile ssd.dat

35

Appendix C

All results

This section shows the performance graphs of the CDs containing larger
volumes (40K, 80K and 160K jobs). The Y-axis describes the average jobs
read per second for a given minute, which can be read from the X-axis.

The three graphs in Figure C.1 shows the results from the the test runs
performed on an HDD and the three graphs in Figure C.2 shows the runs
performed on an SSD.

36

Figure C.1: The performance data of a test run with 40K, 80K and 160K jobs
stored on an HDD

0 5 10 15

0

50

100

150

200

250

DBFS

ext4

XFS

40K jobs (HDD)

Elapsed time [min]

Jo
bs

 r
ea

d
(a

ve
ra

ge
)

(a) 40K jobs

0 10 20 30 40

0

50

100

150

200

250 DBFS

ext4

XFS

80K jobs (HDD)

Elapsed time [min]

Jo
bs

 r
ea

d
(a

ve
ra

ge
)

(b) 80K jobs

0 20 40 60 80 100

0

50

100

150

200

250 DBFS

ext4

XFS

160K jobs (HDD)

Elapsed time [min]

Jo
bs

 r
ea

d
(a

ve
ra

ge
)

(c) 160K jobs

37

Figure C.2: The performance data of a test run with 40K, 80K and 160K jobs
stored on an SSD

0 2 4 6 8

0

50

100

150

200

250 DBFS

ext4

XFS

40K jobs (SSD)

Elapsed time [min]

Jo
bs

 r
ea

d
(a

ve
ra

ge
)

(a) 40K jobs

0 5 10 15

0

50

100

150

200

250

DBFS

ext4

XFS

80K jobs (SSD)

Elapsed time [min]

Jo
bs

 r
ea

d
(a

ve
ra

ge
)

(b) 80K jobs

0 5 10 15 20 25 30 35

0

50

100

150

200

250 DBFS

ext4

XFS

160K jobs (SSD)

Elapsed time [min]

Jo
bs

 r
ea

d
(a

ve
ra

ge
)

(c) 160K jobs

38

Bibliography

Douglas Comer. The ubiquitous b-tree. Computing Surveys, Vol. 11(No. 2),
1979.

Kira Isabel Duwe. Comparison of kernel and user space file systems. Bachelor
thesis, University of Hamburg, 2007.

Kevin Fairbanks. An analysis of ext4 for digital forensics. In The Digital
Forensic Research Conference, 2012.

Garcia-Molina, J. H. Ullman, and J. Widom. Database Systems: The Com-
plete Book. Pearson, 2003.

D Giampaolo. Practical File System Design with Be File System. Morgan
Kaufmann, 1998.

Christoph Hellwig. Xfs: The big storage for linux. ;LOGIN:, 2009.

IBM. Ibm archives: Edgar f. codd. IBM Research News, 2003.

W. Krier and E. Liska. FUSE Design Document. Sun Microsystems, 2009.

A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier.
The new ext4 filesystem: current status and future plan. In Proceedings
of the Linux Symposium, 2007.

N. Murphy, M. Tonkelowitz, and M. Vernal. The design and implementation
of the database file system. Technical report, Faculty of Sciences and Art,
2002.

Oracle Database Concepts. Oracle, 2017.

39

F. Paganelli, Zs. Nagy, and O. Smirnova. ARC Computing Element, System
Administrator Guide. NorduGrid, 2016.

Aditya Rajgarhia and Ashish Gehani. Performance and extension of user
space file systems. In Proceedings of the 2010 ACM Symposium on Applied
Computing, 2010.

XFS Filesystem Structure. Silicon Graphics Inc., 2006.

Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto,
and Geoff Peck. Scalability in the xfs file system. In Proceedings of the
1996 Annual Conference on USENIX Annual Technical Conference, 1996.

B. Vangoor, V. Tarasov, and E. Zadok. To fuse or not to fuse: Performance
of user-space file systems. In Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST 17), 2017.

40

	Introduction
	Data storage technologies
	Thesis specifications
	Background and problem statement
	Research questions
	Study scope
	Contributions of this study
	Report overview
	Related work

	ARC and file systems
	The ARC middleware
	ARC overview
	A-REX
	The infoprovider subsystem
	Reading metadata files
	Performance deterioration

	File Systems
	Basic structures of a file system
	Initializing a file system
	ext4
	XFS

	Method
	Phase one: Searching for a database-backed file system
	Phase two: Test specification
	Overview
	Amount of jobs and metadata files
	Generating a job and metadata for the test run

	Search process outcome and test results
	File system candidate
	Search process
	The chosen file system candidate

	Server specifications
	ARC performance results
	Average read rate
	Performance graphs

	Discussion
	Source criticism
	Finding a databased-backed file system
	Analysis of the performance data
	Proposed solution for ARC servers
	Conclusion

	Appendices
	Code repositories
	Test run scripts
	ARC source code repository

	Technical details and configurations
	Chapter 3
	Metadata generation
	Running the infoprovider subsystem

	Chapter 4
	Configuring the RDBMS
	The target CDs

	All results
	Framsida1.pdf
	Blank Page

